资讯动态

细胞铁死亡(Ferroptosis)的信号通路

2022-11-30 10:30:35
|
访问量:116692

  铁死亡(Ferroptosis)是一种铁依赖性的,区别于细胞凋亡、细胞坏死、细胞自噬的新型的细胞程序性死亡方式。铁死亡的主要机制是,在二价铁或酯氧合酶的作用下,催化细胞膜上高表达的不饱和脂肪酸,发生脂质过氧化,从而诱导细胞死亡;此外,还表现为抗氧化体系(谷胱甘肽GSH和谷胱甘肽过氧化物酶4-GPX4)的表达量的降低。

  铁死亡的信号通路

  谷胱甘肽过氧化物酶与铁死亡

  铁死亡的上游通路,最终都是通过直接或间接影响谷胱甘肽过氧化物酶 (glutathione peroxidase,GPXs)的活性,降低细胞抗氧化能力,致使脂质过氧化反应增加,脂质活性氧增多,最终引起铁死亡。所以,GPXs家族在铁死亡过程中起关键作用。

  GPXs家族有许多成员,包括GPX1~GPX8,其中GPX4在铁死亡中扮演着更加重要的角色。GPX4是脂质过氧化过程的抑制蛋白,能够降解小分子过氧化物以及相对复杂的脂质过氧化物。用siRNA敲低细胞的GPX4表达后,发现细胞对铁死亡更敏感,相反,上调GPX4的表达则会产生对铁死亡的耐受。

  RSL3是重要的铁死亡诱导剂,用荧光素标记的RSL3处理细胞后进行筛选,发现GPX4是RSL3的靶蛋白。另外,其他的一些化合物,如DPI7、DPI10等,同样能够直接作用于GPX4。这些化合物通过抑制GPX4的活性,致细胞抗氧化能力下降,脂质活性氧上升,最终引起铁死亡。

  此外,甲羟戊酸通路(mevalonatepath,MVA通路)可通过调节硒代半胱氨酸tRNA的成熟而作用于GPX4,引起细胞的铁死亡。硒代半胱氨酸是GPX4活性中心的氨基酸之一,而将其嵌入GPX4则需要特殊的转运体——硒代半胱氨酸tRNA。硒代半胱氨酸tRNA的成熟需要异戊烯基转移酶将异戊烯焦磷酸(isopentenylpyrophosphate,IPP)中的异戊烯基转移至硒代半胱氨酸tRNA前体,而IPP是MVA通路的产物。因此,MVA通路可以通过下调IPP,进而影响硒代半胱氨酸tRNA的合成,进一步干涉GPX4的活性,引起铁死亡。

  胱氨酸/谷氨酸转运受体(system Xc-)与铁死亡

  通过器官型海马脑片培养模型(OHSC),发现谷氨酸诱导的兴奋性毒性细胞死亡过程中有铁死亡参与。在谷氨酸诱导兴奋性毒性细胞死亡的过程中,谷氨酸可以启动两条通路,一条为钙离子的流入,一条为对依赖system Xc-的胱氨酸吸收通路的抑制。

  而钙离子的螯合剂,乙二醇双(2-氨基乙基醚)四乙酸对Erastin诱导的铁死亡没有抑制作用。β巯基乙醇(β-ME)能够在不通过system XC-情况下促进胱氨酸的吸收,而它恰恰能够显著抑制Erastin、谷氨酸诱导的细胞死亡。

  因此推断,system XC-介导的胱氨酸吸收在铁死亡中有重要作用。在Erastin和柳氮磺胺吡啶诱导的铁死亡中发现了SLC7A11的上调。System XC-是由SLC7A11和SLC3A2组成的异二聚体。对system XC-的抑制会导致SLC7A11的代偿性转录上调,而抑制system XC-,阻碍胱氨酸的吸收后,又通过怎样的路径导致铁死亡?Yang等发现谷胱甘肽(glutathione,GSH)的减少会导致GPXs活性降低。GPXs能够催化过氧化氢和氢过氧化物的降解,抑制脂质活性氧的生成,而谷胱甘肽是其必需的辅助因子。

  综上,Erastin通过抑制system XC-,阻碍了谷胱甘肽的吸收,谷胱甘肽又是GPXs发挥作用的必要辅助因子,因此导致GPXs活性降低,细胞抗过氧化能力降低,脂质活性氧堆积,引起细胞的氧化性死亡。

  p53介导的铁死亡

  p53基因是重要的抑癌基因,其介导的细胞周期抑制、衰老、凋亡在肿瘤的发生发展过程中有重要作用。Jiang等用ROS处理p53基因沉默的H1299细胞,细胞活性没有变化,但激活p53基因后再用ROS处理,细胞死亡率高达90%,说明p53基因激活后细胞抗氧化能力显著降低。再向其加入铁死亡抑制剂ferrostatin-1后,细胞死亡率下降约40%,从而发现p53不仅可以引起细胞凋亡,也能诱导细胞铁死亡。Jiang等发现上调p53基因表达后,SLC7A11的信使RNA和蛋白表达量显著降低,从而证实SLC7A11为p53基因的新靶点。而system XC-正是由SLC7A11和SLC3A2组成的异二聚体。因此,p53可通过下调SLC7A11的表达从而抑制system XC-吸收胱氨酸,致使胱氨酸依赖的谷胱甘肽过氧化物酶活性降低,细胞抗氧化能力降低,脂质活性氧升高,引起细胞铁死亡。

  VDACs与铁死亡

  电压依赖性阴离子通道(voltage-dependent anion channels,VDACs)是转运离子和代谢产物的跨膜通道,Yagoda等发现Erastin可作用于VDACs。用siRNA干预VDAC2或VDAC3表达后发现细胞对Erastin引起的铁死亡产生耐性,但是过表达VDAC2和VDAC3并未提高细胞对Erastin的敏感性,所以,VDAC2和VDAC3是铁死亡的必要非充分条件。此外,Erastin还可导致线粒体外膜通透性的改变。因此Yagoda认为Erastin作用于VDACs,引起线粒体功能紊乱,氧化性物质释放,最终引起细胞氧化性死亡。

  铁死亡的其他调节通路

  除了上述铁死亡的主要发生机制外,铁死亡还可以受到其他通路的调节。在氧化应激状态下,甲硫氨酸可通过硫转移途径(the sulphur-transfer pathway)转化为胱氨酸,合成谷胱甘肽,协助谷胱甘肽过氧化物酶抑制脂质活性氧生成,避免氧化性细胞损伤。因此硫转移途径可抑制铁死亡的发生;血红素加氧酶1(hemeoxygenase-1,HO-1)是细胞内铁的重要来源之一,Kwon等证实了其可以诱导脂质过氧化反应从而导致铁死亡的发生;转铁蛋白也是细胞内铁的来源之一,它亦参与了铁死亡的调节过程。


文章推荐
男子求隔离未果6口人确诊 已获救治
2022-01-05
为了“求确诊”,2021年12月25日下午1点半,西安市雁塔区金地西沣一位···
实验做一种细胞系怎么样(细胞实验怎么设计)
2023-05-13
做细胞系是分子生物学和生物医学研究的重要环节之一。细胞系是从原代···
蛋白质凝胶电泳注意事项
2022-06-01
大多数蛋白质凝胶电泳是还原性条件下的十二烧基硫酸钠聚丙烯酰胺凝胶···
中科院1区TOP/IF17分!华中科技大学王世宣团队解锁卵巢衰老时空密码:FOXP1的关键性转录调控
2024-12-16
卵巢衰老的秘密,你知道么?女性在40岁以前出现卵巢功能减退的现象,···
“疼痛”有了创新思路也能上Nature子刊!西安交大团队揭示慢性神经病理性疼痛中的ACC-VTA-ACC正反馈环路!
2024-12-20
“腰疼、腿疼、颈椎疼……”,长期伏案学习的生物医学科研人应该知道···
差异性分析方法都有哪些?这21种快速了解下
2024-12-18
在单样本均数比较、两样本均数比较、多样本均数比较、定类数据比较4种···
中科院1区TOP/IF17分!华中科技大学王世宣团队解锁卵巢衰老时空密码:FOXP1的关键性转录调控
2024-12-16
卵巢衰老的秘密,你知道么?女性在40岁以前出现卵巢功能减退的现象,···
中科院1区TOP/14.7分拿下!不愧是“铁死亡”+“慢阻肺”双强组合,直接一把命中Nature子刊!
2024-12-13
慢阻肺(COPD)是慢性阻塞性肺疾病的简称,一种以持续呼吸道症状和气···
  • 业务咨询

    业务咨询专线:133 7682 0615

    Email:lxyjy@wie-biotech.com

在线留言(即刻联系为您提供专业的解决方案) ×
留言咨询

感谢您的关注,如有需要请留言,我们会尽快和您联系!